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Material studied: Linear Representations of Finite Groups
by Jean-Pierre Serre
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What is Representation Theory?

Representation theory is the study of algebraic structures
by representing the structure’s elements as linear
transformations of vector spaces.

This makes abstract structures more concrete by
describing the structure in terms of matrices and their
algebraic operations as matrix operations.



Linear
Representations of

Finite Groups

William Hargis

Representations
Theory

Structures Studied

Linear
Representations

Character Theory

Characters

Orthogonality of
Characters

Character Properties

Examples of
Characters

Cyclic Groups

Structures Studied

Structures studied this way include:

Groups

Associative Algebras

Lie Algebras
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Finite Groups

Finite Groups

Study group actions on structures.

especially operations of groups on vector spaces;
other actions are group action on other groups or
sets.

Group elements are represented by invertible matrices
such that the group operation is matrix multiplication.
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Linear Representations

Let V be a K -vector space and G a finite group.
The linear representation of G is a group homomorphism
ρ : G → GL(V ).

So, a linear representation is a map
ρ : G → GL(V ) s.t. ρ(st) = ρ(s)ρ(t) ∀s, t ∈ G .
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Importance of Linear Representations

Linear representations allow us to state group theoretic
problems in terms of linear algebra.

Linear algebra is well understood; reduces complexity of
problems.
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Applications of Linear Representations

Applications in the study of geometric structures and in
the physical sciences.

Space Groups

Symmetry groups of the configuration of space.

Lattice Point Groups

Lattice groups define the geometric configuration
of crystal structures in materials science and
crystallography.
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Characters

The character of a group representation is a function on
the group that associates the trace of each group
element’s matrix to the corresponding group element.

Characters contain all of the essential information of the
representation in a more condensed form.
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Trace Review

Note: Trace is the sum of the diagonal entries of the
matrix.

Tr(X ) = Tr(


x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . . . . . . . .
xm1 xm2 . . . xmn

)

Tr(X ) = x11 + x22 + ... + xmn =
∑n

i=1 xii
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Characters

Characters:

For a representation ρ : G → GL(V ) of a group G on V .
the character of ρ is the function χρ : G → F given by
χρ(g) = Tr(ρ(g)).

Where F is a field that the finite-dimensional vector
space V is over.
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Orthogonality of Characters

The space of complex-valued class functions of a finite
group G has an inner product given by:

{α, β} :=
1

G

∑
g∈G

α(g) ¯β(g) (1)

From this inner product, the irreducible characters form
an orthonormal basis for the space of class functions and
an orthogonality relation for the rows of the character
table. Similarly an orthogonality relation is established
for the columns of the character table.
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Consequences of Orthogonality:

Consequences of Orthogonality:

An unknown character can be decomposed as a
linear combination of irreducible characters.

The complete character table can be constructed
when only a few irreducible characters are known.

The order of the group can be found.
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Character Properties

A character χρ is irreducible if ρ is irreducible.

One can read the dimension of the vector space
directly from the character.

Characters are class functions; take a constant value
on a given conjugacy.

The number of irreducible characters of G is equal
to the number of conjugacy classes of G .

The set of irreducible characters of a given group G
into a field K form a basis of the K -vector space of
all class functions G → K .
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Examples of Characters

Note: the elements of any group can be partitioned in to
conjugacy classes; classes corresponding to the same
conjugate element.

Cl(a) =
{
b ∈ G |∃g ∈ G with b = gag−1

}
(2)

From the definition it follows that Abelian groups have a
conjugacy class corresponding to each element.
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Examples: Generalized Cyclic Group Zn

Note: All of Zn’s irreducible characters are linear.

Zn is an additive group where Zn =
{

0̄, 1̄, 2̄, ..., ¯n − 1
}

with conjugacy classes: {0̄},{1̄},{2̄},...,{ ¯n − 1}.

Let ωn=e
2πi
n be a primitive n root of unity.

(any complex number that gives 1 when raised to a
positive integer power)
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Examples: Generalized Cyclic Group Zn

Note: All of Zn’s irreducible characters are linear.

Zn is an additive group where Zn =
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0̄, 1̄, 2̄, ..., ¯n − 1
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with conjugacy classes: {0̄},{1̄},{2̄},...,{ ¯n − 1}.
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n be a primitive n root of unity.

(any complex number that gives 1 when raised to a
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Examples: Generalized Cyclic Group Zn

Note: All of Zn’s irreducible characters are linear.

Zn is an additive group where Zn =
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0̄, 1̄, 2̄, ..., ¯n − 1
}

with conjugacy classes: {0̄},{1̄},{2̄},...,{ ¯n − 1}.

Let ωn=e
2πi
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(any complex number that gives 1 when raised to a
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Examples: Generalized Cyclic Group Zn

As the number of irreducible characters is equal to the
number of conjugacy classes, then the number of
irreducible characters of Zn is n.
|Irr(Zn)| = n.

Let χ0, χ1, χ2, ..., χn−1 be the n irreducible characters
of Zn then χm(j̄) = ωjm

n

where 0 ≤ j ≤ n − 1 and 0 ≤ m ≤ n − 1.
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Examples: Generalized Cyclic Group Zn

As the number of irreducible characters is equal to the
number of conjugacy classes, then the number of
irreducible characters of Zn is n.
|Irr(Zn)| = n.

Let χ0, χ1, χ2, ..., χn−1 be the n irreducible characters
of Zn then χm(j̄) = ωjm

n

where 0 ≤ j ≤ n − 1 and 0 ≤ m ≤ n − 1.
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Character Table for Zn

Character Table for Zn

gi 0̄ 1̄ 2̄ ... ¯n − 1
|Cl | 1 1 1 ... 1
χ0 1 1 1 ... 1
χ1 1 ωn ω2

n ... ωn−1
n

χ2 1 ω2
n ω4

n ... ω
2(n−1)
n

...
...

...
...

...

χn−1 1 ωn−1
n ω

2(n−1)
n ... ω

(n−1)(n−1)
n
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Cyclic Group Z6

We can find the character table for Z6 fairly easily.
Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}.

There are 6 conjugacy classes:
{0̄}, {1̄}, {2̄}, {3̄}, {4̄}, {5̄}}.

Let ω6=e
2πi
6 be a primitive 6 root of unity; then

χm(j̄) = ωjm
6 .

Where 0 ≤ j ≤ 5 and 0 ≤ m ≤ 5.
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Cyclic Group Z6

We can find the character table for Z6 fairly easily.
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There are 6 conjugacy classes:
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Cyclic Group Z6

We can find the character table for Z6 fairly easily.
Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}.

There are 6 conjugacy classes:
{0̄}, {1̄}, {2̄}, {3̄}, {4̄}, {5̄}}.

Let ω6=e
2πi
6 be a primitive 6 root of unity; then

χm(j̄) = ωjm
6 .

Where 0 ≤ j ≤ 5 and 0 ≤ m ≤ 5.
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Character Table: Cyclic Group Z6

ω6
6 = 1 due to cycle.

gi 0̄ 1̄ 2̄ 3̄ 4̄ 5̄
|Cl | 1 1 1 1 1 1
χ0 1 1 1 1 1 1
χ1 1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

χ2 1 ω2
6 ω4

6 1 ω2
6 ω4

6

χ3 1 ω3
6 1 ω3

6 1 ω3
6

χ4 1 ω4
6 ω2

6 1 ω4
6 ω2

6

χ5 1 ω5
6 ω4

6 ω3
6 ω2

6 ω1
6
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Computing the Roots of Unity

We know that ω6
6 = 1.

Calculating the rest from ω6 = e
2πi
6 :

ω1
6 = 1

2
+
√
3
2
i ,

ω2
6 = −1

2
+
√
3
2
i ,

ω3
6 = −1,

ω4
6 = −1

2
−
√
3
2
i ,

ω5
6 = 1

2
−
√
3
2
i .
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